97 research outputs found

    Multiple Z' -> t-tbar signals in a 4D Composite Higgs Model

    Get PDF
    We study the production of top-antitop pairs at the Large Hadron Collider as a testbed for discovering heavy Z' bosons belonging to a composite Higgs model, as, in this scenario, such new gauge interaction states are sizeably coupled to the third generation quarks of the Standard Model. We study their possible appearance in cross section as well as (charge and spin) asymmetry distributions. Our calculations are performed in the minimal four-dimensional formulation of such a scenario, namely the 4-Dimensional Composite Higgs Model (4DCHM), which embeds five new ZZ's. We pay particular attention to the case of nearly degenerate resonances, highlighting the conditions under which these are separable in the aforementioned observables. We also discuss the impact of the intrinsic width of the new resonances onto the event rates and various distributions. We confirm that the 14 TeV stage of the LHC will enable one to detect two such states, assuming standard detector performance and machine luminosity. A mapping of the discovery potential of the LHC of these new gauge bosons is given. Finally, from the latter, several benchmarks are extracted which are amenable to experimental investigation.Comment: 30 pages, 3 figures. Text and figures updated to match published versio

    Echoes of the electroweak phase transition: discovering a second Higgs doublet through A0 → ZH0

    Get PDF
    The existence of a second Higgs doublet in nature could lead to a cosmological first-order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We obtain the spectrum and properties of the new scalars H0, A0, and H� that signal such a phase transition and show that the observation of the decay A0 → ZH0 at LHC would be a “smoking gun” signature of these scenarios. We analyze the LHC search prospects for this decay in the llbb¯ and llWþW− final states, arguing that current data may be sensitive to this signature in the former channel as well as there being great potential for a discovery in either channel at the very early stages of the 14 TeV run

    AFBA_{FB} as a discovery tool for ZZ^\prime bosons at the LHC

    Get PDF
    The Forward-Backward Asymmetry (AFB) in ZZ^\prime physics is commonly only perceived as the observable which possibly allows one to interpret a ZZ^\prime signal by distinguishing different models of such (heavy) spin-1 bosons. In this article, we examine the potential of AFB in setting bounds on or even discovering a ZZ^\prime at the Large Hadron Collider (LHC) and show that it might be a powerful tool for this purpose. We analyze two different scenarios: ZZ^\primes with a narrow and wide width, respectively. We find that in both cases AFB can complement the cross section in accessing ZZ^\prime signals.Comment: arXiv admin note: substantial text overlap with arXiv:1503.0267

    Non-exotic ZZ' signals in +\ell^+\ell^-, bbˉb\bar b and ttˉt\bar t final states at the LHC

    Full text link
    In the attempt to fully profile a ZZ' boson accessible at the Large Hadron Collider (LHC), we study the sensitivity of di-lepton (for the electron, muon and tauon cases) and di-quark (for the case of the heavy flavours, tt and, possibly, bb) samples to the nature of the new gauge state, for a one-dimensional class of non-exotic ZZ' bosons. Assuming realistic final state reconstruction efficiencies and error estimates, we find that, depending on the CERN collider energy and luminosity, the best chances of extracting the ZZ' quantum numbers occur when two or more of these channels are simultaneously explored, as none of them separately enables one to fully probe the parameter spaces of the aforementioned models. Effects of Standard Model (SM) background as well interferences between this and the various ZZ' signals have been accounted for. A complete study of cross sections and asymmetries (both spatial and spin ones) makes clear the need for complementarity, especially for their disentanglement over the full parameter space.Comment: 23 pages, 10 figures. Main revision of scopes; added section 2.4.3 to describe strategy to fit couplings and table 3 to compare significances. Updated/added references. Results unchange

    Hierarchical versus degenerate 2HDM: the LHC run 1 legacy at the onset of run 2

    Get PDF
    Current discussions of the allowed two-Higgs-doublet model parameter space after LHC run 1 and the prospects for run 2 are commonly phrased in the context of a quasidegenerate spectrum for the new scalars. Here, we discuss the generic situation of a two-Higgs-doublet model with a nondegenerate spectrum for the new scalars. This is highly motivated from a cosmological perspective since it naturally leads to a strongly first-order electroweak phase transition that could explain the matter-antimatter asymmetry in the Universe. While constraints from measurements of Higgs signal strengths do not change, those from searches of new scalar states get modified dramatically once a nondegenerate spectrum is considered

    Non-linear Higgs portal to Dark Matter

    Get PDF
    The Higgs portal to scalar Dark Matter is considered in the context of non-linearly realised electroweak symmetry breaking. We determine the dominant interactions of gauge bosons and the physical Higgs particle h to a scalar singlet Dark Matter candidate. Phenomenological consequences are also studied in detail, including the possibility of distinguishing this scenario from the standard Higgs portal in which the electroweak symmetry breaking is linearly realised. Two features of significant impact are: i) the connection between the electroweak scale v and the Higgs particle departs from the (v + h) functional dependence, as the Higgs field is not necessarily an exact electroweak doublet; ii) the presence of specific couplings that arise at different order in the non-linear and in the linear expansions. These facts deeply affect the Dark Matter relic abundance, as well as the expected signals in direct and indirect searches and collider phenomenology, where Dark Matter production rates are enhanced with respect to the standard portal

    Truncation, validity, uncertainties

    Get PDF
    The truncation of the standard-model effective field theory, its validity andthe associated uncertainties have been discussed in meetings of the LHC EFT WG.Proposals were made by participants to address these issues. No consensus wasreached and no formal recommendation is therefore put forward at this time.None of the proposals has been approved or validated and further work is neededto establish a prescription. This note aims at summarizing the proposals andpoints of debate.<br

    Truncation, validity, uncertainties

    Get PDF
    The truncation of the standard-model effective field theory, its validity andthe associated uncertainties have been discussed in meetings of the LHC EFT WG.Proposals were made by participants to address these issues. No consensus wasreached and no formal recommendation is therefore put forward at this time.None of the proposals has been approved or validated and further work is neededto establish a prescription. This note aims at summarizing the proposals andpoints of debate.<br

    Les Houches 2015: Physics at TeV colliders - new physics working group report

    Get PDF
    We present the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 1-19 June, 2015). Our report includes new physics studies connected with the Higgs boson and its properties, direct search strategies, reinterpretation of the LHC results in the building of viable models and new computational tool developments. Important signatures for searches for natural new physics at the LHC and new assessments of the interplay between direct dark matter searches and the LHC are also considered.Comment: Proceedings of the New Physics Working Group of the 2015 Les Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 197 page
    corecore